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Abstract—Hydrogenation of linear w-azido-pentafluorophenyl esters gives cyclic peptides containing 14-, 21-, 28-, 35-, 56- and 70-
membered ring lactams from oligomers derived from g-amino acids in excellent to moderate yields with a lack of racemisation

during the cyclisation step.
© 2003 Elsevier Ltd. All rights reserved.

The predilection towards constrained structure of large
macrocycles derived from carbohydrates and peptides
has been used by Nature for many purposes.! Kessler
and co-workers> has pioneered the incorporation of
sugar amino acids (SAAs)? into cyclic peptides* and
indicated the confluence of structure between cyclo-
dextrins and cyclic peptides in such structures to give a
novel carbopeptoid-cyclodextrin® class of biomaterial.”
Cyclic peptides containing SAAs®® have been used in
tissue engineering of cartilage'® and have provided a set
of novel integrin inhibitors."!

Cyclic peptides also have potential applications in
nanotube technology'>!* although they are most widely
known as antibiotics'® and for other chemotherapeutic
purposes. Accordingly, there has been much interest in
their chemical'’ and enzymatic'® synthesis. The two
most widely used cyclic peptides—gramicidin and
cyclosporine are 30- and 33-membered rings; significant
activity was found in a 42-ring analogue of gramicidin."
Even bigger cyclic peptides have biological activity; a
54-membered ring has been used as a foot-and-mouth
disease viral epitope,’ and an 87-membered ring is in
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pharmaceutical development as an antibiotic.?! Easy

access to a new set of cyclic peptides with some of the
structural features of carbohydrates should provide bio-
materials with useful properties.

Polymerisation of a further class of SAAs [6-amino-6-
deoxyaldonic acids (e-amino acids)] may provide fully
hydroxylated analogues of nylon 6 as a family of new
biomaterials. Although analogues of nylon 6,6—in
which one of the components is a carbohydrate??>*—
have been studied for some time,? the first example of a
fully hydroxylated analogue of nylon 6 has only recently
been reported.?¢

In a project designed to make homogeneous oligomers
of fully hydroxylated nylon 6 2 as a new class of bio-
polymer,”’ a fully protected form 3% of 6-amino-6-de-
oxygalactonic acid 1 was converted by standard peptide
coupling methods to a series of protected oligomeric
azido methyl esters 4-7 (Scheme 1). This paper reports
the conversions of the methyl esters to the correspond-
ing pentafluorophenyl (PFP) esters; their subsequent
hydrogenation leads to very high yields of large (up to
70-membered ring) protected macrocyclic lactams. Ini-
tial studies are also reported on the deprotection to form
14 8 and 28 9—but not completely deprotected 56 10—
ring carbopeptoid analogues of cyclodextrins. These
materials constitute a novel class of biomacrocycle, the
properties of which may have a number of interesting
features (Scheme 1).
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Hydrogenation of the linear dimeric azido PFP ester
11% in the presence of palladium black at 10.2mg/mL
(13.8mM) gave an easily separable mixture of the cyclic
dimer 12 (30% yield) and the cyclic tetramer 13 (30%
yield), together with some 16% of higher oligomers
(Scheme 2); all hydrogenations in this paper were carried
out at room temperature and pressure with dioxane as
the solvent. When the hydrogenation was carried out at
1.0mg/mL (1.38 mM) up to 87% of the cyclic dimer of
123 was formed; in some experiments at the same
concentration yields of around 75% of 12 together with
about 10% of 13*! were isolated. Differences in these
yields may arise from different degrees of aggregation of
the catalyst during the reduction, or for other reasons;
nonetheless, high yields of the dimer 12 can be obtained
at low concentration. Deprotection of the dimer 12 by
treatment with acid ion exchange resin gave the crys-
talline 14-membered ring lactam 8% in 65% yield, the
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structure of which was firmly established by X-ray
crystallographic analysis (Fig. 1).%

It was just possible that a catenane structure, rather than
the monocyclic 28-membered ring structure 13, had been
formed. This ambiguity was resolved by experiments on
the hydrogenation of the linear tetramer PFP ester 14,
which at 10mg/mL (8.0mM) formed the same cyclic
tetramer 13 in 80% yield, together with 17% of the cyclic
octamer 15, isolated in 17% yield, giving a total yield of
cyclic materials of 97%. When the hydrogenation was
performed at a concentration of 50 mg/mL (4.0 mM) a
57% yield of the tetramer 13 was obtained together with
31% of the octamer 15°**—again a high combined yield
of the two macrocyclic lactams of 88%.

A low yield of the tetramer has also been obtained by in
situ activation of the pre-formed linear amino acid as its
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up to 87% yield

80% yield

Figure 1. X-ray crystal structure of deprotected dimer 8 with crystal-
lographic numbering.

PFP ester;*> however, the present procedure provides far
superior and more convenient access to reasonable
amounts of material. The cyclic tetramer 13 was suc-
cessfully deprotected by treatment with aqueous trifluo-
roacetic acid to give 9% in quantitative yield; longer
treatment with acid gave rise to other products. It has
not been possible so far to achieve complete deprotec-
tion of the octamer 15 to give the unprotected 56-ring
lactam 10.

The potential for the cyclisation of further linear oligo-
mers was investigated (Scheme 3). Thus hydrogenation
of the linear trimer PFP ester 16 at 1 mg/mL afforded the
cyclic trimer 17°7 in 75% isolated yield; no significant
amount of the cyclic hexamer was found in the reaction
mixture, although mass spectrometry of the residue
indicated that traces had been formed. In contrast,
hydrogenation of the PFP ester of linear pentamer 18 at
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Scheme 3. Products from hydrogenation of linear trimer 16 and linear pentamer 18.

1 mg/mL gave 71% of the cyclic pentamer 19°® together
with a small amount (9%) of the cyclic decamer 20.%

The ease of separation of the different cyclic products by
chromatography has been crucial in establishing the
structures of the cyclic materials. As CHN microanalysis
of all the products is identical, the structural assign-
ments rely on mass spectroscopic analysis, including
accurate mass measurements for the smaller macro-
cycles and a comparison for the larger molecules of the
calculated and observed isotope distributions. The
symmetry of the galactose repeating unit for all the
protected cyclic compounds considerably simplifies both
the 'H (Table 1) and '*C (Table 2) NMR spectra.

Again the octamer 15 and the decamer 20 may have
catenane rather than monocyclic structures. The very
similar NMR data for all of the oligomers—effectively

identical for the larger rings—is consistent with a
monocyclic structure. This dichotomy will be resolved
by synthesis and attempted closure of the linear octamer
and decamer in due course.

The predisposition for cyclisation of the linear amino-
PFP esters in excellent yields was unexpected. As yet, no
limit to the size of ring formed has been established. It is
not clear at present if the high cyclisation yields are
specific to the case of galacto-isomers or will prove to be
a general method for the generation of a wide range of
huge ring macrolactams. It is noteworthy that high yields
of homogeneous material indicated that little if any
epimerisation at C-2 of the activated species takes place.
It may be that these large ring lactams—in deprotected,
partially protected or fully protected forms—will have
biological and/or structural properties of interest. The
following paper describes further cyclisations of mixed
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Table 1. Comparison of chemical shifts of selected protons in galacto cyclooligomers (in CD;CN, 500 or 400 MHz)

'"H NMR analysis of protected oligomers

H-1 6 (ppm) H-1' 6 (ppm) H-2 6 (ppm) H-3 6 (ppm) H-4 6 (ppm) H-5 6 (ppm) CONH ¢ (ppm)
Dimer 12 2.87 3.79 4.30 4.15 3.86 4.50 7.32
Trimer 17 3.45 3.45 4.31 4.18 4.24 4.52 7.33
Tetramer 13 3.52 3.59 4.39 4.08 4.34 4.46 7.15
Pentamer 19 3.48 3.54 4.29 4.03 4.32 443 7.20
Octamer 15 3.52 3.52 4.27 3.99 4.31 4.45 7.19
Decamer 20 3.51 3.51 4.25 3.98 4.31 4.45 7.20

The carbon atoms have been numbered in each case starting with the carbon attached to N terminal end of the compound.

Table 2. Comparison of chemical shifts of selected carbons in galacto cyclooligomers (in CD;CN, 125 or 100 MHz)

3C NMR analysis of protected oligomers

C-1 6 (ppm) C-2 6 (ppm) C-3 0 (ppm) C-4 6 (ppm) C-5 6 (ppm) CONH 6 (ppm)
Dimer 12 41.73 71.78 80.17 79.84 74.89 170.44
Trimer 17 40.10 75.56 79.55 78.65 74.95 171.52
Tetramer 13 39.00 75.05 77.41 78.51 74.71 171.31
Pentamer 19 40.65 76.10 78.59 78.99 76.03 171.16
Octamer 15 40.65 76.85 78.40 79.15 76.58 171.10
Decamer 20 40.68 76.85 78.00 79.19 76.67 171.15
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2.04 mmol) in 1,4-dioxane (15mL). The reaction mixture
was stirred for 4h at room temperature. TLC (ethyl
acetate/cyclohexane, 1:1) indicated complete conversion of
starting material (R; 0.6) to one product (R; 0.0-0.1).
Amberlite IR-120 (H+) resin was added to the solution,
which was then stirred for 15 min. The resin was removed
by filtration and the filtrate was concentrated in vacuo to
give the crude azido acid (1.09g, 95%), which was
dissolved in 1,4-dioxane (7mL). Pentafluorophenol
(718 mg, 3.90 mmol) and EDCI.HCI (449 mg, 2.34 mmol)
were added and the reaction mixture was stirred at room
temperature under an atmosphere of argon. After 16h,
TLC (ethyl acetate/cyclohexane, 1:1) indicated complete
conversion of the starting material (Ry 0.0-0.1) to a major
UV active product (R; 0.65). The solvent was removed in
vacuo and the residue was dissolved in dichloromethane
(75mL). The resulting solution was washed with aqueous
sodium bicarbonate solution (5% w/v, 30 mL x2) and the
aqueous layer was extracted with dichloromethane
(30mL). The combined organic layers were washed with
citric acid solution (5% w/v, 40 mL). The organic layer was
dried (magnesium sulfate), filtered and the solvent re-
moved. The residue was purified by flash column chroma-
tography (ethyl acetate/cyclohexane, 1:4) to yield the
dimeric PFP ester 11 (1.32 g, 94%) as a colourless oil, [oc]é5
+2.8 (c 1.3, CDCl3); Vpay (thin film): 3428 cm™! (N-H),
2105ecm~' (Nj stretch), 1797cm™! (C=0, CO,Pfp),
1681 cm™! (C=0, amide I), 1520cm™"' (C=0, amide II);
MS m/z (ES+): 725.25 (M+H*, 100%), 747.23 (M+Na",
85%1); HRMS: C30H37N4011F5Na (M+Na+) caled
747.2282, found 747.2277; C3)H3;N4Oy, Fs caled: C 49.73%,
H 5.15%, N 7.73%, found C 49.35%, H 4.97%, N 7.25%.
Selected data for protected cyclic dimer 12: oil, [oc]f)4 +6.35
(¢ 3.1, CHCl); vma (thin film): 3349cm~! (N-H),
1682cm™! (C=0, amides 1), 1520cm™' (C=O0O, amides
I1); 'H and *C NMR are given in Tables 1 and 2. MS m/z
(ES+): 51526 (M+H™, 100%); HRMS: CyH39N,Oq
(M+H") calcd 515.2605, found 515.2603.

Selected data for protected cyclic tetramer 13: [o]5y —35.2
(c 1.3, CHCI); mp: >210°C; vy (thin film): 3429 cm™!
(N-H), 1682cm~! (C=0, amides I), 1525cm~! (C=0,
amides II); '"H and *C NMR are given in Tables 1 and 2.
MS m/z (ES+): 1029.60 (M+H*, 20%), 1051.55 (M+Na™,
100%); MS m/z Isotope distribution (ES+):
C48H76N4020Na (M+Na+) caled 105150, 100%,
1052.50, 60%; 1053.50, 20%; 1054.50, 5%, measured
1051.55, 100%; 1052.51, 60%; 1053.53, 20%; 1054.61,
50/0; C43H76N4020 caled C 5602%, H 744%, N 5440/0,
found C 55.52%, H 7.91%, N 5.04%.

Data for deprotected cyclic dimer 8: [o5y: —45.2 (¢ 0.65,
H,0); mp: >220 °C; fine, white solid darkened on heating;
Vmax (thin film, Ge plate): 3348cm~! (O-H, N-H),
1644cm™" (C=0, amides 1), 1544cm™' (C=O, amides
II); '"H NMR &y (500 MHz, D,0): 3.15 (2H, dd, J;  12.8,
Ji2 3.8, 2xH-1), 3.32 (2H, a-br d, J34 8.6, 2x H-3), 3.52—
3.55 (2H, br m, 2xH-1"), 3.87 (2H, dd, Js5 8.6, Js5 4.9,
2xH-4), 3.97 (2H, br m, 2xH-2), 4.22 (2H, d, Js4 4.9,
2x H-5); BC NMR 6¢ (125MHz, D,0): 39.98 (2xC-1),
67.50 (2xC-2), 69.92 (2xC-3), 70.46 (2xC-4), 74.90
(2xC-5), 174.07 (2x CONH); MS m/z (ES-): 353.12
([M—H]i, 1000/0); HRMS: C12H21N2010 ([M—H]i) calcd
353.1196, found 353.1193.

Crystallographic data deposited at CCDC, reference no:
CCDC 218823. Crystal data: Size: 0.30x0.40x0.40,
Crystal system: Trigonal, Space group: P3,21, a:
9.2689(1), b: 9.2689(1), c¢: 28.9539(6), Volume:
2154.24(6), Density: 1.65, 20y, 60.04, Radiation type:
Mo Ko, Wavelength: 0.710730 A, Diffractometer type:
Nonius KappaCCD, Scan type: Omega, Temperature

34.

35.

36.

37.

38.

39.

40.

41.

(K): 150, Reflections measured: 6990, Independent reflec-
tions: 2416, Rint: 0.0004, Reflections used: 1887, sigma(I)
limit: 3.00, u: 0.145, Absorption type: multi-scan, Trans-
mission range: 0.94-0.96, Structure solution: Sir92, Struc-
ture refinement: CRYSTALS, Refined on F squared,
Hydrogen on carbon: riding, others: refined, Partially
occupied water of solvation: 0.30, some disorder, Ap,;,:
—0.35, Appax: 0.36, R-factor: 0.039, Weighted R-factor:
0.094, Number of parameters: 249, Goodness of fit: 1.118.
Selected data for protected cyclic octamer 15: [« +0.83
(¢ 0.6, CD3CN); vpmax (thin film): 3428cm~! (N-H),
1677c¢cm™"' (C=O0, amides I), 1527cm~! (C=0, amides
II); 'H and *C NMR are given in Tables 1 and 2 MS m/z
(ES+): 2075.1 (M+NH;, 100%), 2080.0 (M+Nat, 95%);
MS m/z (ES+): 1040.2 ([M+H+NaP*, 50%), 1051.2
((M+NH4+Nal**, 100%); MS m/z Isotope distribution
(ES+): CysH5oNgOyNa (M+Na™) caled 2080.0, 90%;
2081.0, 100%; 2082.0, 65%; 2083.0, 30%; 2084.0, 6%,
measured 2079.0, 90%; 2080.0, 100%; 2081.0, 55%; 2082.0,
25%; 2083.0, 5%; 2084.0, 3%; MS m/z Isotope distribution
(ES+)Z C96H156N9040 (M+NHI) caled 20750, 90%,
2076.0, 100%; 2077.1, 65%; 2078.1, 30%; 2079.1, 6%,
measured 2074.1, 80%; 2075.1, 95%; 2076.1, 55%; 2077.1,
30%; 2078.1, 7%.

Mayes, B. A.; Stetz, R. J. E.; Ansell, C. W. G.; Fleet, G.
W. J. Tetrahedron Lett. 2003, 45. See: doi:10.1016/j.tetlet.
2003.10.104.

Data for deprotected cyclic tetramer 9: [a}f)s +3.0 (¢ 0.2,
D,0); mp: >220°C, white solid darkened on heating
above 160°C; '"H NMR &y (500 MHz, D,O): 3.32 (4H,
dd, J,y 13.6,J 7.5, 4xH-1), 3.56 (4H, dd, J;; 13.6,J 5.8,
4xH-1"), 3.63 (4H, dd, J54 9.5, J5, 1.9, 4 xH-3), 3.93 (4H,
dd, Jy3 9.5, Jus 1.8, 4xH-4), 3.94 (4H, m, 4xH-2), 4.41
(4H, d, Js4 1.8, 4xH-5); *C NMR 6¢ (125 MHz, D,0):
41.83 (4xC-1), 68.86 (4xC-2), 69.87 (4xC-3), 7147
4xC-4), 71.77 (4xC-5), 176.21 (4x CONH); MS m/z
(ES-): 707.25 ((IM-H]~, 19%), 708.25 ([M-H]~, 58%),
709.26 ([M - H]f, 1000/0), HRMS: C24H43N4020 ([M—H]f)
calcd 707.2471, found 707.2492.

Selected data for protected cyclic trimer 17: [oc]]z)1 +3.2 (c
2.0, CDCl5); Vpax (thin film): 3352cm™! (N-H), 1673 cm™!
(C=0, amides I), 1531 cm™! (C=O0, amides II); 'H and
3C NMR are given in Tables 1 and 2; MS m/z (ES+):
794.30 ([M+Na]+, 100%), HRMS: C35H57N30|5Na
([M+Na]") calcd 794.3687, found 794.3693.

Selected data for protected cyclic pentamer 19: [cz]g1 -15.6
(c 1.0, CHCl;); mp: sinters 118-119 °C, melts 120-121 °C;
Vmax (thin film): 3429cm~! (N-H), 1682cm~! (C=O,
amides I), 1528cm™! (C=0, amides II); 'H and "*C
NMR are given in Tables 1 and 2, MS m/z (ES+): 1308.10
(IM+Na]*, 100%); MS m/z Isotope distribution (ES+):
CesoHosNsOysNa ([M+Na]*) caled 1308.6, 100%; 1309.6,
70%; 1310.6, 30%; 1311.6, 10%; 1312.6, 3%, measured
1308.9, 100%; 1309.9, 70%; 1310.9, 18%; 1311.9, 4%;
1312.9, 2%.

Selected data for protected cyclic decamer 20: [o]5 +0.55
(¢ 0.55, CD3;CN); vpax (thin film): 3429cm™' (N-H),
1682cm~! (C=0, amides I), 1520cm~! (C=0, amides II);
'H and C NMR are given in Tables 1 and 2. MS m/z
(ES+): 2591.3 (IM+NH4]*, 100%); MS m/z Isotope
distribution (ES+) C120H194N11050 ([M+NH4]+) calcd
2589.3, 70%; 2590.3, 100%; 2591.3, 80%; 2592.3, 40%;
2593.3, 20%; 2594.3, 8%, measured 2590.3, 68%; 2591.3,
100%; 2592.3, 80%; 2593.3, 38%; 2594.3, 8%; 2595.3, 5%.
Mayes, B. A.; Cowley, A. R.; Ansell, C. W. G.; Fleet, G.
W. J. Tetrahedron Lett. 2003, 45. See: doi:10.1016/
j-tetlet.2003.10.105.
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